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function f£f,(...}: function ffi(...):
D SR - b (&X)

Y o= .. PR

ffag{...) wb (&Y}

a1l = ... Y 1=

ffab(...)
wbi(&z[i])
Zfi] 1=

FIG. 6

#include <stdio.h>
#include <stdlib.h>»

int X;

int main )

{
X = rand (};
printf ("&X = %p; X = %d\n", &X, X);
return 0;

FIG. 7



US 9,465,594 B2

Sheet 6 of 7

Oct. 11, 2016

U.S. Patent

JIpue
ﬁt-ev.m.mw, = mp
() 2n084
(4ot — Fmyonoai
esTe
ﬁmﬁ wswu\ﬁﬁ

Axxﬁ.}uwh
(9s)yopuss
(40ypuas
(da1) puss
(M ‘doywiou =:9m
(3 ‘do)uou =:44
{dasinm =4
(- vwmw —: dq

1q

8 9l
Sy d
ypd FTpus
7td (|9m})opiedsip
1td (4a1)opuss
opd esTe
(dm)on051
6¢d (0 = dmudmp
ged|g=2)vp="9iufmn g1
Lgd (4amynssi
o¢'d (dm — fmyopuss
ced (dmzynosi
ped (fm)puss
ced| (M Foyuuou =:fm
¢ed Ampawﬂ#&m =1 M
fgd CT)EFF =B
I

2!
ey
vl
Ivi
0v3
6t

8¢
Led
9¢3
ced
ped
el
el
I3



US 9,465,594 B2

Sheet 7 of 7

Oct. 11, 2016

U.S. Patent

F1pue
(-)dz =: da
(Cdiyyem
ﬁmﬁvuag
eSTO
( Cdiyem
(@ =9dmyfmn
p=2o)vg="dufm 1
Aﬁx — hﬁu.:um.ﬁ =: idy
niﬁgg
(4 M) Dpuss
(d1ypuss
() puss
(M “doyunou =:9m
(4 ‘9oyuuou =:4s
{daz}nm =:m
(-)idz = da
(fmgynoss =: ldy
7q

6 Ol
LLd
9.°d J1pus
grd | ()fdy = da
prd | ([))opiedsip
gL d (myopuss
Ld esTe
() 2n034
Ld (@ = dImufmn
oLd | 0= v<®Eﬁ¢Cx§ FT
69°d (Lfipynem
g9d (dn— f M)DPpUIs
L9'd (Lfipy1em
99°d ({m)puss
¢od (M Foywuou =1 m
#9°d {ragtnm =M
€9d (C"53F = 1
z9d ﬁﬁﬁpum._ =: Cfy
19°d (dmgynoss =: lfy

/g

9L13
&L
LS
€Ll
¢l
IL3

0L}
693
891
L9
993
94
793
£93
93
194



US 9,465,594 B2

1
DISTRIBUTED IMPLEMENTATION OF
SEQUENTIAL CODE THAT INCLUDES A
FUTURE

BACKGROUND

For improved performance, code can be executed in a
distributed fashion in a parallel computing system that has
multiple processing nodes. Distributed processing can
include dividing processing tasks into multiple partitions
that can be concurrently executed by the multiple processing
nodes.

In some cases, a specialized framework, library or pro-
gramming language can be used to implement a distributed
processing system. Examples include the MapReduce
framework, the MPI (Message Passing Interface) Library,
and the Erlang programming language. However, using such
specialized frameworks, libraries, and languages involves
understanding parallel programming concepts that can be
relatively complex.

BRIEF DESCRIPTION OF THE DRAWINGS

Some embodiments are described with respect to the
following figures:

FIGS. 1 and 2 illustrate example sequential codes that can
be converted to distributed code in accordance with some
implementations;

FIG. 3 is a block diagram of an example arrangement
according to some implementations;

FIG. 4 illustrates programs of the distributed code gen-
erated according to some implementations;

FIG. 5 is a flow diagram of a process for producing
distributed code from sequential code, according to some
implementations;

FIG. 6 illustrates code for instrumenting a function,
according to some implementations;

FIG. 7 illustrates an example code to show that a static
data item in a program’s executable file will have the same
virtual address with each run;

FIGS. 8 and 9 illustrate programs of the distributed code,
according to further implementations.

DETAILED DESCRIPTION

A simpler way of producing distributed code for running
in a distributed computing environment involves generating
the distributed code from sequential code. Sequential code
refers to code (which includes a collection of executable
instructions) that is arranged to execute sequentially. A
future construct (also referred to simply as a “future”) can be
included in the sequential code to allow for generation of the
distributed code. A future can refer to a placeholder for a
value that will eventually exist. This value can come into
existence at any time, so long as the value is available before
its implicit or explicit use.

An example original sequential code, P,, is depicted in
FIG. 1. The example original sequential code, P, has three
lines of code. In line 1, a variable tf is set equal to the output
of a function ff. In line 2, a variable tp is set equal to the
output of a function fp. In line 3, the value of the variable tf
is used. A function can refer to a routine or any other code
that can perform a specified task.

The program P depicted in FIG. 1 is a futurized instance
of the original sequential code P.. In the futurized instance
P, lines 1'-3' correspond to lines 1-30f the sequential code P..
However, at line 1' of the futurized instance P, a call of ff'is
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2

prefixed with the future keyword to convert the call to a
future call. The normal call is referred to as the future call’s
synchronous counterpart. The future call immediately
returns with a future. This future is assignable to a variable,
such as to tf at line 1' in FIG. 1. The future is said to be
claimed at the point at which its value is used, such as at line
3'in FIG. 1.

The code stretch from just after the future’s assignment to
just before its claim point is referred to as the present
section—for example, the code from just after line 1' to just
before line 3' is the present section in the example of FIG.
1. The present section of a code includes one or more
functions that are invoked after the future call and prior to
claiming the future. As discussed further below, the function
that is the subject of the future call and the function(s) in the
present section can be executed concurrently—the ability to
separately identify the future call and the present section
forms the basis for generating distributed code based on
sequential code, in accordance with some implementations.

The future call is said to complete when its synchronous
counterpart has fully executed. At run time, the code is free
to complete the future call anywhere between the point the
future call is initiated (invocation point) and the claim point.
In accordance with some implementations, a parallel pro-
gramming model (PPM) is provided in which a future call’s
synchronous counterpart starts executing concurrently with
the present section. If a potential breach of sequential
semantics, called a violation, is detected, then all effects due
to the parallel execution are discarded and the lines of the
sequential code are executed again, this time sequentially in
accordance with P,. In this manner, the distributed imple-
mentation of the sequential code achieves a safe future, since
the semantics of the original sequential program are pre-
served.

The sequential program can be written in an unmanaged
language, such as C or C++. An unmanaged language does
not employ entities such as virtual machines or the like to
ensure address consistency or to perform sequential seman-
tics checks. Examples of managed languages include Java
and C#.

FIG. 2 shows an example futurized Quicksort program. In
FIG. 2, the original sequential Quicksort program is repre-
sented as 202, while its futurized instance is represented as
204. In the futurized Quicksort program, the future keyword
is added to the call of a gsort function. In FIG. 2, unlike in
FIG. 1, the future call (in this case a call of the gsort
function) is not implicitly or explicitly used (as is the case
at line 3' in FIG. 1). If a future’s value is not implicitly or
explicitly used, as in FIG. 2, the future is considered to be
claimed at the end of the current lexical scope. A scope can
refer to a context within a program in which a variable is
valid and can be used. The lexical scope specifies that the
name of a variable does not exist outside the text of a
function to which that variable is bound.

Generating distributed code from sequential code can be
associated with various challenges. In accordance with some
implementations, relatively efficient techniques or mecha-
nisms are provided to produce distributed code from sequen-
tial code. In accordance with some implementations, the
distributed code generated from sequential code can include
multiple programs that can be executed on respective dif-
ferent processing machines. A “processing machine” can
refer to a computer system, a processor, a core of a proces-
sor, or any other processing circuit that is able to execute
program code.

The multiple programs of the distributed code include a
first program that is to execute a first function associated
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with a future call, and a second program that is to execute
a second function in a present section of the sequential code.
The ability to execute the first and second programs on
different processing machines allows for parallel execution
of the first and second functions that can result in improved
performance as compared to execution of the sequential
code in a sequential manner.

Techniques or mechanisms according to some implemen-
tations allow for non-disruptive use of sequential code in
producing the respective distributed code. The sequential
code can be written in standard programming languages
such as C, C++, or other languages. Non-disruptive use of
sequential code refers to use in which no data structure
changes have to be made to the source code of the sequential
code. Instead, relatively minor syntactic changes can be
made to a control structure of the sequential code.

A future according to some implementations can decouple
a logical behavior of the future from a performance behavior
of the future. Sequential semantics (i.e. semantics of the
sequential code) are used to determine the logical behavior,
and a PPM is used to determine the performance behavior.
From a programmer’s point of view, all reasoning is as if all
mentions of a future in the code were elided (removed) and
the code were executed sequentially. The only impact of a
future is on the program’s performance during execution.

In the ensuing discussion, any function symbol in P.’s
source code (the original sequential source code) is referred
to with the subscript s. Any function symbol in P’s source
code (a futurized instance of the sequential source code) is
referred to as is. Thus, ff, and fp_ in P, are the sequential
instances of ff and fp in P. In contrast, ff and fp are the
futurized instances of ff; and fp..

Example System

FIG. 3 is a block diagram of an example system 300 in
which techniques or mechanisms can be provided. The
system includes a storage media 302 that stores a futurized
code 304 (e.g. Pin FIG. 1 or code 204 in FIG. 2). The storage
media 302 can include one or multiple storage devices. In
accordance with some implementations, the futurized code
304 may be annotated with at least one future, such that at
least one call of a function in the sequential code is asso-
ciated with the future (this call of the function is a future
call). Examples of futurized instances of sequential codes
are depicted in FIGS. 1 and 2 discussed above.

The system 300 also includes a compiler 306, which can
receive, as input, the futurized code 304, to produce, as
output, a distributed code 308. The compiler 306 can be
executable on one or multiple processors 310.

In accordance with some implementations, the distributed
code 308 includes multiple programs, including a first
program 312 (referred to as P, and a second program 314
(referred to as P,). The distributed code 308 in FIG. 3 can
thus be considered to include two programs that execute
concurrently.

The following assumes that the futurized code 304 is a
futurized instance of the sequential program P_of FIG. 1. In
such an example, the states of P.and P, just prior to line 1'
in FIG. 1 are the same as that of P just prior to line 1. After
reaching line 1', Ponly performs the future (e.g. future call
of the function fT'in FIG. 1) and P, only performs the present
(e.g. computes the function fp in the present section of the
code of FIG. 1). P.and P, can then exchange their results,
which brings their states to that of P after line 3. Execution
can be faster as compared to the sequential execution of P..
since Prand P, each perform a partial portion of P..

The system 300 further includes a network interface 316
to allow the system 300 to communicate over a network 318
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with processing machines 320 and 322. The processing
machines 320 and 322 can each be configured similar to the
system 300 (which is another processing machine).
Although three processing machines (300, 320, 322) are
depicted in FIG. 3, it is noted that in alternative examples,
different numbers (less than three or greater than three) can
be used in other examples.

The programs P.and P, can be executed concurrently in
different processing machines. For example, the program P
can be executed on one of the machines 300, 320, and 322,
while the program P, can be executed on another one of the
machines 300, 320, and 322.

In some examples, the processing machine on which P,
executes can be referred to as the “root node.” The root node
and a collection of server nodes (other processing machines)
can form a distributed execution platform. In some
examples, all processing machines on which programs of the
distributed code 308 can execute can have the same ISA
(Instruction Set Architecture), operating system, and librar-
ies, although the processing machines can differ in aspects
such as their microarchitecture or file system layout. For
simplified explanation, it can be assumed that a common file
system is provided across all processing machines, so that a
file can be accessed from each processing machine using the
same file name. However, in other examples, different file
systems can be employed in the different processing
machines.

At least one processing machine (e.g. 300) can include a
daemon referred to as a sentinel 330. The sentinel 330 can
continually listen for requests to create a distributed code
from sequential code.

The future keyword manifests as a pragma. A compiler
that does not support futures can still handle futurized code.
Turning on support for the future pragma can be as simple
as flipping a switch—e.g. by providing the following com-
mand, cc-futures foo.c.

The parallelism is transparent to a programmer or user of
the sequential code. In other words, the programmer or user
does not have to be concerned that the sequential code would
actually be converted to a distributed code prior to execu-
tion. The fact that P, and P,of the distributed code 308 may
execute on different processing machines is hidden from the
programmer or user.

When an execution of P (the futurized code) is invoked on
a root node, what is actually invoked is an execution of P,,.
Initialization code in P, contacts the sentinel 330 to initiate
an execution of a matching P, on another processing
machine. After that, there is no more process creation.
Hence, the present and future processes (P, and P, are
initiated together and executed in tandem. In particular, the
dynamic fork-based creation of processes is avoided.

In accordance with some implementations, each of the
programs 312 and 314 (P.and P, respectively) can include
a normalization function to normalize virtual addresses
accessed by functions in the respective programs 312 and
314. The programs 312 and 314 can use virtual addresses.
However, virtual addresses may be different on different
processing machines on which the programs 312 and 314
execute, respectively. Thus, a virtual address that is sent
from one program executing on a first processing machine to
another program executing on a second processing machine
may not be recognizable by the second processing machine,
since the two processing machines may use different virtual
addresses. Instead, the virtual addresses are normalized, by
each normalization function, into normalized addresses,
which are then exchanged between the programs 312 and
314 executing on separate processing machines. The nor-
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malized addresses can be understood on the respective
separate processing machines.

In some examples, a program may have different virtual
addresses on different processing machines because of
ASLR (Address-Space Layout Randomization). Operating
systems can utilize ASLR for security reasons. Hence, the
placements of the process image parts of the same program
across distinct but similar machines (e.g. same ISA, oper-
ating system, and libraries) are not guaranteed to be the
same.

Details of Example Programs of Distributed Code

Examples of the programs P.and P, are depicted in FIG.
4, where the programs of FIG. 4 correspond to the futurized
code P of FIG. 1. In FIG. 4, the program P includes lines f.1
to £.13 of code, whereas the program P, includes lines p.1 to
p-14 of code. The code in lines f.1 to £.13 is referred to as
the future harness and the code in lines p.1 to p.14 is referred
to as the present harness.

Although reference is made to two different programs P,
and P, in the present discussion, it is noted that the distrib-
uted code 308 generated by the compiler 306 of FIG. 3 can
actually be a single distributed code, referred to as P, that
can be instantiated multiple times to run as multiple
instances of P;,. The multiple instances of P, can include a
first instance that makes up the program P, and a second
instance that makes up the program P, where the first
instance of P, executes the code in the present section of the
futurized code P, and the second instance of P, executes the
code in the future call of the futurized code P.

P, can include a runtime-defined function called i-am-
the-future( ) that can return one of two values (e.g. Boolean
values) in each instantiation of Pj,. The value returned is
dependent on the environment at the start of the run of P,

If i-am-the-future( ) returns a first value, then P, behaves
as P,in a run, whereas if i-am-the-future( ) returns a second
value, P, behaves as P, in a run. An example of P, is
provided below, where lines f.1 to .13 include the code of
P, while lines p.1 to p.14 include the code of P,.

if i-am-the-future( )

// Lines f.1 to £.13.
else

// Lines p.1 to p.14.
endif

Lines f.1 to £.13 are the code for Pcorresponding to lines
1'to 3' of P in FIG. 1. Lines p.1 to p.14 are the code for P,
corresponding to lines 1' to 3' of P in FIG. 1. It is assumed
that there are no future calls before line 1' and after line 3'
in P. Then the code prior to line 1 and subsequent to line 3
in P, is, for the most part, replicated prior to lines f.1 and p.1
and subsequent to lines f.13 and p.14, respectively.

If another future call exists before line 1' in P or after line
3'in P, then the code depicted at lines f.1 to .13 and at lines
p-1to p.14 in FIG. 4 can be replicated prior to lines f.1 and
p-1 or subsequent to lines .13 and p.14, respectively, except
with the names of the functions changed, to correspond to
the different functions that may be invoked in the other
future call.

Lines f.1 and p.1 in FIG. 4 contain calls to the functions
ff', and fp',. These functions ff', and fp', are derived from the
sequential instances ff; and fp, (corresponding to functions ff
and fp, respectively, in the sequential code P,) by adding
instrumentation to intercept, at run time, the virtual
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addresses in nonlocal accesses of data in ff; and fp. Ignoring
this instrumentation, ff'; and ff,, and fp', and fp, have
identical semantics.

Adding instrumentation to a function refers to adding
instruction(s) to the function to perform specified task(s). In
the case of ff'; and fp',, the instrumentation involves adding
instructions to intercept virtual addresses in nonlocal
accesses of data.

A memory access is nonlocal to a function if the access is
a read or a write of an object (a named piece of storage in
the execution environment) that resides outside that func-
tion’s active stack frame. Examples of nonlocal accesses
include the following: a read of a global scalar variable, a
write of a global array element, and so forth. The instru-
mentation, added at every nonlocal access, is akin to a
memory management barrier—the task of the instrumenta-
tion is to store the virtual address of the access in a read set
(R) or a write set (W).

The barriers track nonlocal accesses by P.and P, at the
granularity of a card, which is a division of memory
intended to be finer than a page of the memory. A page of the
memory can refer to a predefined segment of the memory.
The runtime code (of P, and P,) divides a v-bit virtual-
address space into 2" cards, where the card size is specified
when the runtime code is built.

In some examples, a card is a contiguous sequence of 2¢
bytes aligned on a 2°-byte boundary. The parameter ¢ (c=0)
is a non-negative integer constant that is specified when the
runtime code is built. To “track an access” is to include the
virtual address of the read or written location in a set. A set
including expressions of such locations is referred to as the
“tracked set”. The tracking ignores the content of the loca-
tion in question—the tracking is thus address-based and not
value-based. In addition, the card size, which is the granu-
larity of tracking, is transparent to the programmer or user.
The card size can be chosen when the runtime code is
built—the choice of the card size does not alter program
semantics, but can affect runtime performance.

At the end of line f.1 of the program P, elements in the
read set R and write set W are the virtual addresses of the
nonlocal objects read or written in ff,. Similarly, at the end
of line p.1 of the program P, elements in the corresponding
read set R and write set W are the virtual addresses of the
nonlocal objects read or written in fp,.

Lines f.2 and p.2 add to the read and write sets associated
with the programs P,and P,—line £.2 adds &tf (the virtual
address of the variable tf) to P/’s write set W, and line p.2
adds &tp (the virtual address of the variable tp) to P,,’s write
set W. After execution of lines f.2 and p.2, the read and write
sets of virtual addresses are considered built.

Lines f.3, p.3, and p.4 each includes a call of a normal-
ization function, norm( ), to normalize virtual addresses into
a normal form. The normalization function converts ele-
ments of a write set W or read set R to respective normalized
addresses. Unlike a virtual address, a normalized address for
a nonlocal object is the same at both physical machines
executing corresponding P.and P,,, if P,and P, are run with
the same inputs. Line f.3 invokes norm(o, W) to normalize
the virtual addresses in P/s write set W into normalized
addresses, using a segment map o, Similarly, line p.4
invokes norm(a,, W) to normalize the virtual addresses in
P,’s write set W into normalized addresses, using another
segment map o,, and line p.3 invokes norm(o,, R) to
normalize the virtual addresses in P,’s read set R into
normalized addresses, using a segment map o,

In some implementations, the normal form of a virtual
address v is a duple (sn,so), where sn and so are the
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s-number and s-offset of v. An s-number is an identifier that
uniquely identifies a contiguous region in virtual memory
called the segment. An s-offset is a displacement from a
segment’s base. Hence, sn is the s-number of the segment
that contains v and so is the displacement of v from the base
of sn. In Linux, for example, a segment corresponds to a
VMA (Virtual Memory Area).

For every segment except the stack, the base is its lowest
virtual address. For the stack, the base is its highest virtual
address. This is because stacks grow “downward”, meaning
from high to low virtual address.

A segment map (e.g. 0,0r 0,,) is an injective function that
associates an s-number with the virtual address of the
corresponding segment’s base. The segment map is used to
go between a virtual address’s absolute and normal forms.
The segment map can be set up by locating a program’s text,
data, stack, and other segments when a process of the
program starts up. These segments can be located by using
services of a dynamic linker/loader (e.g. 1d.so in Linux),
such as services provided by the dl_iterate_phdr interface.
Although reference is made to Linux routines and com-
mands in this discussion, it is noted that in other examples,
routines and commands of other operating systems can be
used.

In some examples, a stack segment’s s-number can be 0.
The s-numbers of special segments, such as vDSO, can be
pre-specified positive integers. The segments that come
from ELF (Executable and Linkable Format) files can be
assigned s-numbers that are constructed from their file
names. A goal is to ensure that segments are uniquely
numbered and that a segment in P, (P,) has the same
s-number as its counterpart in P,(P).

The creation of new segments can be detected by inter-
cepting the mmap( ) system call, which is a Linux routine to
obtain memory from the system. In both P,and P, s-num-
bers are assigned to the created segments in the same order
from the same sequence of positive integers. As long as a
segment in one program (P/P,) has a counterpart in the other
program (P,/P)), and as long as segments in one program are
created in the same order as the counterparts in the other
program, then the segments in P-and P, can be matched and
the matching segments will have the same s-numbers.

At lines 1.4 to 1.6 of P,and lines p.5 to p.7 of P, in FIG.
4, the programs P,and P, exchange the normalized sets w
r, and w,, (containing normalized addresses produced using
the respective norm( ) functions at lines £.3 , p.3 and p 4,
respectively). A send(s) function can be used to send the
elements of a set s of one program to the other program. For
example, send(w ) at line 1.4 sends the elements of the set w,
of the program P, to the other program P,. P, sends its
normalized read and write sets r,, and w,, to P, by invoking
send(r,) and send(w,) at lines p.5 and p.6, respectively.

The matching recv(&r) in the other program fills the set
r with the received elements, first allocating r if appropriate.
For example, recv(&w,) at line p.7 of P, receives the
elements of w, from P,

The send( ) call can be nonblocking, which allows P.and
P, to immediately advance to the next step, which is to
receive the sent sets: P, invokes recv(&r,) and recv(&w,),
and P, invokes recv(&r).

The recv call is blocking, as denoted by the horizontal bar.
The call does not return until all of the content of the
matching send call is received.

Once all the recv calls return on both sides (i.e. Prand P,),
the exchange of the normalized read and write sets is
complete. Both P.and P, will then each have the sets w, w,
and r,,. After lines £.6 and p.7, P, has inr, and w,, the sets of
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normalized addresses read and written by P,,, and P, has in
w,the set of normalized addresses written by P

Instead of sending individual normalized addresses
between the programs, ranges of normal addresses can be
exchanged. In such implementations, a set of normalized
addresses can be represented as a set of normalized ranges.
A normalized range is the duple (sn,[s0,,50,]) that denotes all
of the virtual addresses within the segment sn whose s-oft-
sets run from so, through so,. By using normalized ranges,
contiguous sequences of addresses can be collapsed into a
compact interval. Thus, if the normalized ranges are
exchanged between the programs rather than individual
normalized addresses, savings can be achieved in commu-
nications bandwidth and storage space.

Note that the tracking of nonlocal accesses by the pro-
grams P, and P, is asymmetrical. In P,, read and write
accesses of nonlocal or potentially nonlocal data are tracked,
by separate read and write sets. In P only write accesses of
nonlocal or potentially nonlocal data are tracked, by a write
set.

As further depicted in FIG. 4, lines £.7 and p.8 of the
programs Pand P, check for violations of sequential seman-
tics. Each of P, and P, evaluates the violation check predi-
cate

VC=(wNr, =0 (c=0vw,Nw,=0).

If VC is true, sequential semantics is guaranteed. If VC is
false, sequential semantics has been potentially violated.

The violation check predicate at lines f.7 and p.8 includes
a conjunction of two sub-predicates. The first sub-predicate,
(W r,=0), is false if there is a flow dependence from the
future call’s synchronous counterpart to the present section.
In other words, there is a flow dependence if a write is
performed by ff; to a memory location that is read by fp..

The second sub-predicate, (c=0vw,Nw,=#), is false if c=0
and there is an output dependence between the synchronous
counterpart and the present section, in other words both ff,
and fp, write to the same memory location. When ¢=0 and
there is no flow dependence (as checked by the first sub-
predicate), the presence of an output dependence does not
matter because the size of a card when ¢=0 is a byte, which
is the smallest piece of readable or writable memory in some
examples.

Note that anti-dependences do not matter. An anti-depen-
dence exists if what is read by ff| is also written by fp,.
Anti-dependences do not affect sequential semantics
because the address spaces of P.and P, are separate. There-
fore, unlike in a shared-memory setting, anti-dependences
alone do not hinder concurrent execution.

The violation check predicate at lines f.7 and p.8 evalu-
ates to true if no sequential semantics violation is detected.
In that situation, P,and P, exchange the cards written by the
respective programs (lines £.8 and p.9). P, sends the cards
for all of the locations written by P,. However, P,sends just
the cards at the addresses in w,~w, because locations in
ww,, should not be overwritten in P,,.

P invokes sendc(w,~w,, ), which sends the cards located at
w~w, to P, and P, invokes sendc(w,), which sends the
cards located at w, to P, The reason P,sends only the cards
located at w,~w,, 1s because locations in w,/w,, should not
be overwritten in P, in order to ensure sequential semantics.

A sendc(s) function (invoked at each of lines {.8 and p.9)
sends the cards addressed by the elements of s to the other
program. A matching recve(r) function (invoked at each of
lines £.9 and p.10) in the other program receives the cards at
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locations addressed by the elements of r. The sendc and
recvc functions take sets of normalized addresses as argu-
ments.

The functions sendc(s) and recve(r) marshal and unmar-
shal the cards by scanning the normalized addresses in s and
r in the same order, and by using o,and o, to convert the
normalized addresses when reading and writing the cards.
Marshaling a card can refer to converting data in the card to
a format for communication over a network, while unmar-
shaling a card can refer to a receiver converting received
data into the format understood at the receiving processing
machine.

The bar above the recve function denotes its blocking
nature. The sendc function, on the other hand, is a non-
blocking function. The nonblocking nature of sendc allows
P.and P, to immediately advance to the next step, which is
to receive the sent cards, at lines £.9 and p.10.

Once the recvc function returns on both sides, the
exchange of the cards performed to ensure sequential
semantics is complete. Both P, and P, will then have the
same user-program state.

If a violation is detected, cards are only sent from P,to P,
because P/s memory content remains valid. This is because
P, logically executes only ff; by the time it reaches its
violation check. The sent cards are for the locations in
w/Jw,, (as specified in line £11). Upon receiving the cards
at line p.12, P,’s user-program state is set to the user-
program state at line £.11 in P, This is the state between lines
1 and 2 in P,. Both P and P, then normally invoke fp,, which
is in the present section of P,. Thus, if a violation is detected,
the results of the parallel execution are discarded and the
lines of the sequential code are executed again, this time
sequentially in accordance with the sequential program P_.

There is no special consideration for the stack because
activation records in P, for and below the future call would
have returned, and activation records in P, below the call
containing the present section would have returned. Writes
into activation records that are above would be automati-
cally handled by the aforementioned card exchange.

Example Distributed Code Generation Process

FIG. 5 is a flow diagram of a distributed code generation
process 500 according to some implementations, which can
be performed by the compiler 306 of FIG. 3. The distributed
code generation process 500 receives (at 502) a sequential
code that is annotated with a future call (e.g. P in FIG. 1).
Next, the process 500 creates (at 504) multiple programs
based on the sequential code, where the multiple programs
include a first program to execute a first function associated
with the future call (e.g. Py, and a second program to
execute a second function in a present section of the sequen-
tial code (e.g. P,).

The process 500 next includes (at 506) a normalization
function (e.g. norm( ) in FIG. 4) in each of the programs,
where the normalization function is for normalizing virtual
addresses accessed by the first and second functions.

Instrumenting Functions

FIG. 6 depicts an example for instrumenting a function ff,
to produce ff',, which is invoked at line .1 of the program
P,in FIG. 4. A similar approach would be used to instrument
a function fp, to form fp',, which is invoked at line p.1 of the
program P, in FIG. 4.

A function invoked in P is either defined or undefined. The
function is defined if its definition is in P. Suppose that the
ff function called at line 1' in FIG. 1 is a defined function,
and that all of the future or normal calls in the body of the
ff function are to a single defined or undefined function ffa.
This means that ff is a defined function in P, and that all of
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the calls in the body of ff; are to the single defined or
undefined function ffa_. Then the ff', provided in the trans-
lation of P (in particular, for the code in line f.1 in FIG. 4)
can be obtained from ff, by replacing the calls to ffa, in ff,
with calls to ffa',, in addition to instrumenting the nonlocal
accesses in ff,.

In the transformation of ff| into ff'; depicted in FIG. 6,
nonlocal accesses (including accesses of X, Y, and Z[i], for
example) are instrumented. When a global variable X is read
in ff, a call rb(&X) is inserted just before the read of the
global variable X in ff';, where rb is a read barrier. The call
rb(&X) includes &X in the read set R. Similarly, when a
global variable Y and a global array element Z[1] are written
in ff, a call wh(&Y) and a call wh(&Z[i]) are inserted just
before writes to Y and Z[i], respectively, in ff',. The call wb
is a write barrier.

In general, the primed version of every function call-
reachable from either ff; or fp, (i.e. reachable from either f
f, or fp, in the static call graph for P,) may be generated by
the compiler 306, by inserting the read barrier and/or write
barrier as illustrated in FIG. 6.

For the undefined call-reachable functions, however, the
primed versions are to be provided in a library. The library
writer can produce the primed versions in the same way the
compiler produces ff'; from a defined ff,.

Flattened Futures

A translation scheme according to some implementations
for generating distributed code from sequential code does
not result in nesting of futures. In other words, inner future
calls execute as normal calls. The elision of the inner future
calls provides flattened futures. For example, if lines 1' to 3'
of FIG. 1 form the body of the first function executed by P,
then line 1' is the first future call and all future calls in
functions transitively called from lines 1' and 2' will execute
as normal calls.

The execution of inner future calls as normal calls is valid
because futures according to some implementations have
sequential semantics. In any complete call chain, all future
calls except the outermost future call execute as normal
calls. The outermost future call also executes as a normal
call if the outermost future call occurs below a present
section in the complete call chain.

The elision of inner future calls (i.e. to treat inner future
calls as normal calls) affords another advantage to the
translation scheme—it allows nonlocal accesses to be
tracked using a single read set and a single write set. For
instance, if the invocation at line 1'in FI1G. 1 is the outermost
future call, then because inner future calls are treated as
normal calls, the primed functions transitively called from
ff; can add their nonlocal access addresses to the same R and
W sets used by ff',. Hence, the R and W sets can be set up
before the outermost future call and present section initiate
(i.e. before lines f.1 and p.1 in FIG. 4), and can be torn down
after the outermost future call and present section finish (i.e.
after lines .13 and p.14 in FIG. 4).

Multi-Version Translation

In some implementations, a translation scheme to turn P
into a distributed code may involve the compiler 306 having
to generate up to three versions of a defined function called
in the sequential code P. The compiler 306 may also have to
obtain (from a library) up to two versions of an undefined
function.

For example, suppose that lines 1' to 3' in FIG. 1 form the
body of an example defined function foo. The first generated
version of foo corresponds to the code in FIG. 4. If foo is
invoked in the present section of another defined function
bar, then foo, (i.e. the sequential instance of foo) has to be
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generated because foo, will then be called at lines £12 and
p-13 in bar’s translation. Finally, if foo is call-reachable from
a future call, then foo', would also have to be generated, for
use at line f.1 of FIG. 4, for example.

If the ff function called at line 1' in FIG. 1 is undefined,
then FIG. 4 shows that only ff'; has to be provided in the
translation (for the code at line f.1). And if the fp function
called at line 2' is undefined, then FIG. 4 shows that only fp',
and fp_ have to be provided in the translation (for the code
at lines p.1, £.12 and p.13 in FIG. 4).

As noted above, one of the versions of a defined function
in the translation scheme discussed above is foo',. This is
obtained by replacing all calls to a function ffa, in the body
of foo, (i.e. the sequential instance of foo), in addition to
instrumenting the nonlocal accesses in foo,.

The function foo, is useable at lines f.1 and p.1 in FIG. 4.
However, at line f.1, a more specialized version can be used,
one in which none of the reads are tracked. Such a special-
ized version is referred to as foo" . The function foo", can be
generated from foo by replacing all calls to faa; in the body
of foo, by ffa",, and by only instrumenting the nonlocal
writes in foo,. In other words, nonlocal reads do not have to
be instrumented, which can reduce processing time of the
distributed code. Thus, up to four versions of a defined
function may have to be used in an optimized translation
scheme.

If foo were undefined, then up to three versions may have
to be provided in the optimized translation scheme: foo",,
foo',, and foo,.

Irrevocable Functions

Irrevocable functions are handled differently than revo-
cable functions in the process of translating a sequential
code to distributed code. A function is irrevocable if its
effects may not be undoable. Some examples of irrevocable
functions are those that perform input/output operations
(such as a function to perform printing), raise signals, and
perform a nonlocal transfer of control.

If either of the functions invoked at lines 1' and 2' in FIG.
1 is irrevocable, the compiler 306 falls back to generating
normal code for the code section from line 1' to line 3'. Once
again, this is valid because futures have sequential seman-
tics.

An undefined function, e.g. baz, should be marked irre-
vocable unless there is information to the contrary. Infor-
mation to the contrary can come in the form of a summary
that states that baz, is revocable. Such a summary may
accompany baz’s library definition. Whether the undefined
function baz, is revocable may also be determinable from a
specification if baz, is part of a standardized API (Applica-
tion Programming Interface)—for instance, if baz, is a
system call specified by POSIX or belongs to the standard C
library.

A defined function should be conservatively marked irre-
vocable if any statement in its body is irrevocable. A
statement is either a call or a noncall. A call statement is
irrevocable only if the called function is irrevocable. A
noncall statement is usually revocable except in certain
language-specific cases. Examples of language-specific
cases in C are inscrutable asm (assembler) statements and
statements that access volatile objects. Hence, a defined
function’s revocability can be automatically established by
the compiler 306 by examining its noncall statements,
considering the summaries of its undefined callees, and
recursively establishing the revocability of its defined
callees.

More aggressive solutions may be possible in particular
cases. For instance, if the files output by the future call and
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present section can be sandboxed, and if the violation check
is extended to reflect flow and output dependences on file
content, then concurrency may be achievable even in the
presence of file output operations.

Virtual and Normalized Addresses

The following provides an explanation of virtual and
normalized addresses according to some examples. It is
assumed that the compiler 306 writes code into files that
conform to ELF (Executable and Linking Format). An ELF
file is generally one of three types: a relocatable object, an
executable object, and a shared object. A relocatable file is
intended for further linking with other ELF files and even-
tually leads to a shared object or executable file. The
following discussion refers to executable and shared object
files.

A program’s process image is a collection of virtual
memory segments that are constructed from the so-called
sections that comprise its executable and shared object files.
Segments can hold specialized information. For example, a
text segment holds the program’s code and read-only data,
a data segment holds the program’s statically allocated
writable data and heap, and a stack segment holds the
program’s run-time stack.

Segments occupy disjoint intervals in the process’s vir-
tual-address space. Those constructed from the sections of
an executable file are located at fixed virtual addresses. This
means that a static data item in a program’s executable file
will have the same virtual address in every run of the
program. The foregoing point is demonstrated using an
example C program shown in FIG. 7. The value of &X will
be the same in every run of the program. If the example C
program of FIG. 7 were compiled into an ELF executable
file, e.g. a.out, then readelf —s a.out | awk */X/ {print $2)’
gives the value that &X will have on every run. Conse-
quently, &X can be determined without running the pro-
gram.

Segments constructed from the sections of a shared
object, however, can be located at different virtual addresses
in every run. But the relative positions of the static data
within the segments stay fixed.

The logical base of every segment except the stack is at
the segment’s lowest virtual address. Thus, on every run, all
static data will have the same displacements from the logical
bases of their containing segments, irrespective of whether
the segments come from an executable or a shared object
file.

The logical base of the stack segment is at its highest
virtual address because stacks grow downward. Therefore, if
the complete call chain is the same whenever a function is
invoked for the nth time, then a stack variable allocated in
the nth invocation of that function will have the same
displacement from the stack segment’s logical base.

Statically Eliminating a Violation Check

In implementations discussed above, it is assumed that the
programs of the distributed code produced from the sequen-
tial code includes instructions pertaining to performing a
check for violation of sequential semantics (e.g. at lines £.7
and p.8 in FIG. 4). In some cases, the violation check can be
omitted in the runtime code (e.g. Prand P,). Instead, in such
cases, the violation check can be performed statically at
compile time, rather than at run time.

Compilers statically model the possible definitions and
uses at a call site cs of a function by MOD-REF sets.
MOD(cs) is a set of Ivalue expressions of locations that may
be defined on executing cs. REF(cs) is a set of Ivalue
expressions of locations that may be used on executing cs.
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Two lvalues alias if they name overlapping objects. Let
the predicate X~Y be true if there exists an xeX and a yeY,
where X and Y are lvalue sets, such that x and y may alias.
The static violation check performed at compile time would
be as follows:

SVC=(—1 (MOD(s )~REF(s;)))\ (c=
0v(71 MOD(s,)~MOD(s,)))

The static violation check SVC is evaluated at compile
time, for P, in FIG. 1, for example. If SVC evaluates to true,
the compiler replaces the code at lines .7 to £.13 with the
code at lines f.8 to £.9 in FIG. 4, and replaces the code at
lines p.8 to p.14 with the code at lines p.9 to p.10.

Optimized Violation Check

The following describes how a violation check can be
enhanced over the violation check depicted in FIG. 4. It can
be shown that the violation check predicate can be rewritten
as:

VC*:(Wfﬂr*p:lb/\ (wNw,=0),

where r* ,=r,-w,, is equivalent to the violation check used
in FIG. 4 when ¢>0. Hence when ¢>0, rather than tracking
all of the read locations in the read set R, as performed in
FIG. 4, the tracking of read locations that are also written
(either before or after) can be avoided. Read locations that
are also written can include much fewer elements than the
full read set.

Eliminating Covered Read Barriers

A read barrier call (e.g. tb in FIG. 6) on a virtual address
is covered if its execution implies that a write barrier call
(e.g. wb in FIG. 6) on the same virtual address was or will
be executed. According to the optimized violation check
predicate, VC*, discussed above, the compiler 306 can
eliminate covered read barrier calls when ¢>0.

The following describes a procedure for determining a
subset of covered read barrier calls. The input to the proce-
dure is C, a CFG (control-flow graph) that is in the SSA
(Static Single Assignment) form. Suppose that the statement
rbes in a basic block bb is the read barrier call rb(a), where
the lvalue a is the virtual address of a location that is read.
If the basic block bb also contains wb(a), then rbes is a
covered read barrier call.

It is assumed that there is no wb(a) in the basic block bb.
Then all basic blocks in C that contain wb(a) are deleted, to
obtain the CFG C'. If the basic block bb is either unreachable
from the entry basic block or does not reach the exit basic
block in C', then rbcs is a covered read barrier call. The
compiler can safely remove statements that are covered read
barrier calls.

In some examples, the foregoing technique of eliminating
read barriers is able to detect read barrier elimination oppor-
tunities that may not be detectable by dominance or post-
dominance alone.

Hoisting Barriers Out of Loops

Suppose that a statement bes is a read-barrier call rb(a) or
a write-barrier call wb(a). If the variable a is invariant with
respect to its innermost containing loop L, then bes can be
hoisted out of the loop L.

On detecting a barrier hoisting opportunity in the loop L,
the compiler 306 peels out the first iteration of the loop L by
using a loop-peeling transformation. Let L' be the resulting
loop. All barrier calls whose innermost loop is L' and whose
arguments are invariant with respect to L' can be safely
removed by the compiler 306.

Hoisting sendc Calls

Since sendc is a nonblocking call, it can be moved to
points earlier than those shown in FIG. 4. This allows the
runtime to overlap the execution of the sendc call with the
execution of the violation check and other send and receive
operations. FIG. 8 shows a result of applying hoisting of
sendc calls to the code in FIG. 4.
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FIG. 8 shows an example in which the sendc(w~w,) call
at line £8 of FIG. 4 has been moved up, and in which the
sendc(w,) call at line p.9 in FIG. 4 has been moved up. In
each case, the sendc( ) call is moved out of the code that is
performed if the sequential semantics check evaluates to true
(e.g. £.8t0o £9 and p.9 to p.10 in FIG. 4).

The discardc(Iw, ) call at line .42 blocks until n cards
have been received from P,, where n is the number of
elements in w,. These cards are simply discarded on
receipt—they therefore do not affect the user-program state.

Replacing recv and recve with Nonblocking Versions

In FIG. 4, the recv and recvc calls for receiving normal-
ized addresses and corresponding cards, respectively, are
blocking calls.

Let recv and recve be the nonblocking versions of recv
and recvc. The recv and recvc calls can be moved earlier in
each of the programs P and P, as compared to points where
the blocking calls recv and recve would have been placed (as
can be easily determined based on comparing FIGS. 4 and
9). By using recv and recvc, the executions of /(... ) and
fp'y( .. .) in the programs P.and P, can be overlapped with
the receive operations specified by the recv and recvc calls.

As shown at lines £.61, £.62, p.61 and p.70, in FIG. 9, the
recv and recvc calls return handles. A wait call on a handle
blocks until the corresponding receive operation completes.
Thus, after lines .67, £.69, p.69, p.72 and p.75 in FIG. 9, the
receive operations at lines .61, £.62, p.61, p.70 and p.70
would have respectively completed.

System Architecture

Machine-readable instructions described above (includ-
ing the compiler 306, futurized code 304, and the distributed
code 308) can be loaded for execution on a processor or
processors. A processor can include a microprocessor,
microcontroller, processor module or subsystem, program-
mable integrated circuit, programmable gate array, or
another control or computing device.

Data and instructions are stored in respective storage
devices, which are implemented as one or more computer-
readable or machine-readable storage media. The storage
media include different forms of memory including semi-
conductor memory devices such as dynamic or static ran-
dom access memories (DRAMs or SRAMs), erasable and
programmable read-only memories (EPROMs), electrically
erasable and programmable read-only memories (EE-
PROMs) and flash memories; magnetic disks such as fixed,
floppy and removable disks; other magnetic media including
tape; optical media such as compact disks (CDs) or digital
video disks (DVDs); or other types of storage devices. Note
that the instructions discussed above can be provided on one
computer-readable or machine-readable storage medium, or
alternatively, can be provided on multiple computer-read-
able or machine-readable storage media distributed in a
large system having possibly plural nodes. Such computer-
readable or machine-readable storage medium or media is
(are) considered to be part of an article (or article of
manufacture). An article or article of manufacture can refer
to any manufactured single component or multiple compo-
nents. The storage medium or media can be located either in
the machine running the machine-readable instructions, or
located at a remote site from which machine-readable
instructions can be downloaded over a network for execu-
tion.

In the foregoing description, numerous details are set
forth to provide an understanding of the subject disclosed
herein. However, implementations may be practiced without
some or all of these details. Other implementations may
include modifications and variations from the details dis-
cussed above. It is intended that the appended claims cover
such modifications and variations.
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What is claimed is:

1. A method of providing a distributed implementation of
sequential code that includes a future, comprising:

creating, by a system having a processor, a plurality of

programs based on the sequential code that includes at
least one call of a first function associated with the
future, wherein at least a first of the plurality of
programs is to execute the first function associated with
the future, and at least a second of the plurality of
programs is to execute a second function in a present
section of the sequential code;

instrumenting the first function to intercept virtual

addresses accessed during run time of the first function,
wherein the instrumented first function is included in
the first program;

instrumenting the second function to intercept virtual

addresses accessed during run time of the second
function, wherein the instrumented second function is
included in the second program;

including, by the system, a normalization function in each

of the plurality of programs to normalize virtual
addresses accessed by the first and second functions;
including code in the first program to send, to the second
program, normalized addresses produced using the
normalization function in the first program; and
including code in the second program to send, to the first
program, normalized addresses produced using the
normalization function in the second program.

2. The method of claim 1, wherein the present section
includes a portion of the sequential code from just after
assignment of the future to just before a claim point of the
future.

3. The method of claim 1, wherein instrumenting each of
the first and second functions comprises instrumenting each
of the first and second functions to track accesses at a
granularity of a card, wherein a virtual address space is
divided into a plurality of cards, and wherein a size of each
card is based on a configurable parameter.

4. The method of claim 1, wherein the instrumented first
and second functions are to store the intercepted virtual
addresses for read accesses in read sets and the intercepted
virtual addresses for write accesses in write sets.

5. The method of claim 1, wherein sending at least a
portion of the normalized addresses produced using the
normalization function in the first program comprises send-
ing a range that identifies a contiguous sequence of the
normalized addresses in the portion.

6. The method of claim 1, further comprising:

including code in each of the first and second programs to

check for violation of sequential semantics.

7. The method of claim 1, further comprising:

performing a check for violation of sequential semantics

in the plurality of programs at compile time.

8. The method of claim 1, wherein normalizing the virtual
addresses uses a segment map that associates a virtual
address with an identifier that uniquely identifies a segment
in virtual memory.

9. A method of providing a distributed implementation of
sequential code that includes a future, comprising:

creating, by a system having a processor, a plurality of

programs based on the sequential code that includes at
least one call of a first function associated with the
future, wherein at least a first of the plurality of
programs is to execute the first function associated with
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the future, and at least a second of the plurality of
programs is to execute a second function in a present
section of the sequential code;
including, by the system, a normalization function in each
of the plurality of programs to normalize virtual
addresses accessed by the first and second functions;

in each of the plurality of programs, inserting a command
to send data in a segment of memory before code that
is performed if a sequential semantics check evaluates
to true; and
in each of the plurality of programs, converting a blocking
call to a non-blocking call, and inserting the non-
blocking call at a point in the respective program prior
to a point where the blocking call would have been
provided.
10. An article comprising at least one non-transitory
machine-readable storage medium storing instructions that
upon execution cause a system to:
create, by a compiler, a distributed code including a
plurality of programs based on a sequential code that
includes at least one call of a first function associated
with a future, wherein at least a first of the plurality of
programs is to execute the first function associated with
the future, and at least a second of the plurality of
programs is to execute a second function in a present
section of the sequential code;
including, by the compiler, a normalization function in
each of the plurality of programs to normalize virtual
addresses accessed by the first and second functions;

instrument the first function to intercept virtual addresses
accessed during run time of the first function, wherein
the instrumented first function is included in the first
program; and

instrument the second function to intercept virtual

addresses accessed during run time of the second
function, wherein the instrumented second function is
included in the second program.

11. The article of claim 10, wherein the instructions upon
execution cause the system to further:

generate, by the compiler, multiple versions of a function

of the compiler code for use in the distributed code.
12. The article of claim 11, wherein one of the multiple
versions is generated by instrumenting nonlocal reads and
writes in the function by adding read and write barriers,
respectively.
13. The article of claim 11, wherein one of the multiple
versions is generated by instrumenting nonlocal writes in the
function by adding write barriers, without instrumenting
nonlocal reads.
14. The article of claim 10, wherein the instructions upon
execution cause the system to further:
include code in each of the first and second programs to
check for violation of sequential semantics; and

include code in each of the first and second programs to
track reads of memory locations that are not also
written.

15. The article of claim 10, wherein the instructions upon
execution cause the system to further:

eliminate covered read barriers when instrumenting a

function for the plurality of programs.

16. The article of claim 10, wherein the instructions upon
execution cause the system to further:

hoist a read barrier or write barrier out of a loop.
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